With over 30 years in business, we have one thing in mind, quality and customer satisfaction.
Everfilt was established in 1978. The focus of the company was to utilize wedgewire as an underdrain element in the manufacture of sand and media filtration systems. This eventually led to the development of backwashing screen filter systems and low head or sieve bend screen filter systems also.
ALGAE MUST BE CONSIDERED WHEN SELECTING A FILTER SYSTEM
WATER CONDITIONS LIKE THESE MUST BE ADDRESSED FOR IRRIGATION USE
SSM12-2 MEDIA FILTER

• 40 GPM MAX. FLOW
• 12” DIA. FILTERS
• 40GPM MAX. CAPACITY
SM72-10A MEDIA
• FILTER SYSTEM
• 7000GPM MAX. CAPACITY
• ALGAE CONTROL
• NOTE- WHITE PIPE AT BACK RIGHT
RESERVOIR CONCERNS

- WATER LEVELS
- TEMPATURE CHANGES
- CAN LEAD TO ALGAE BLOOMS
CANAL SYSTEM REVIEW

- SEASONAL STARTUP
- WINDBLOWN DIRT, DUST, DEBRIS
A. SITE LOCATION:
SELECT A SITE WHICH IS READILY ACCESSIBLE FOR INSTALLATION AND SERVICING OF THE FILTER, AND AS NEAR TO THE WATER SOURCE AS ECONOMICALLY POSSIBLE. OTHER FACTORS TO CONSIDER ARE: LOCATION OF POWER SOURCE FOR AUTOMATION CONTROL, PROVISION FOR BACKWASH WATER DISPOSAL, SAFETY AND SECURITY OF EQUIPMENT AND OPERATORS.

B. CONCRETE PAD REQ.:
REFER TO THE CONCRETE PAD REQUIREMENT CHART BELOW.

C. TANK LOCATION:
PLACE FILTER TANKS ON LEVELED SURFACE IN THE APPROXIMATE POSITION IN WHICH THEY WILL BE INSTALLED. THIS POSITION WILL ALLOW THE BEST ACCESS TO THE FILLPORT. ALIGN TANKS IN ORIENTATION DESIRED:

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>A - LENGTH</th>
<th>B - LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>feet</td>
<td>meters</td>
</tr>
<tr>
<td>18-2-IL</td>
<td>6</td>
<td>1.8</td>
</tr>
<tr>
<td>18-3-IL</td>
<td>8</td>
<td>2.4</td>
</tr>
<tr>
<td>24-2-IL</td>
<td>7</td>
<td>2.1</td>
</tr>
<tr>
<td>24-3-IL</td>
<td>9</td>
<td>2.7</td>
</tr>
<tr>
<td>30-2-IL</td>
<td>8</td>
<td>2.4</td>
</tr>
<tr>
<td>30-3-IL</td>
<td>11</td>
<td>3.4</td>
</tr>
<tr>
<td>36-2-IL</td>
<td>9</td>
<td>2.7</td>
</tr>
<tr>
<td>36-3-IL</td>
<td>12</td>
<td>3.7</td>
</tr>
<tr>
<td>48-2-IL</td>
<td>11</td>
<td>3.4</td>
</tr>
<tr>
<td>48-3-IL</td>
<td>15</td>
<td>4.6</td>
</tr>
<tr>
<td>48-4-IL</td>
<td>20</td>
<td>6.1</td>
</tr>
<tr>
<td>48-4-CF</td>
<td>21</td>
<td>6.4</td>
</tr>
<tr>
<td>48-5-CF</td>
<td>25</td>
<td>7.6</td>
</tr>
<tr>
<td>48-6-CF</td>
<td>30</td>
<td>9.1</td>
</tr>
<tr>
<td>48-7-CF</td>
<td>34</td>
<td>10.4</td>
</tr>
<tr>
<td>48-8-CF</td>
<td>39</td>
<td>11.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>A - LENGTH</th>
<th>B - LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>feet</td>
<td>meters</td>
</tr>
<tr>
<td>48-6-CL</td>
<td>15</td>
<td>4.6</td>
</tr>
<tr>
<td>48-7-CL</td>
<td>20</td>
<td>6.1</td>
</tr>
<tr>
<td>48-8-CL</td>
<td>20</td>
<td>6.1</td>
</tr>
<tr>
<td>48-9-CL</td>
<td>24</td>
<td>7.3</td>
</tr>
<tr>
<td>48-10-CL</td>
<td>24</td>
<td>7.3</td>
</tr>
<tr>
<td>48-11-CL</td>
<td>29</td>
<td>8.8</td>
</tr>
<tr>
<td>48-12-CL</td>
<td>29</td>
<td>8.8</td>
</tr>
<tr>
<td>48-9-H</td>
<td>25</td>
<td>7.6</td>
</tr>
<tr>
<td>48-10-H</td>
<td>25</td>
<td>7.6</td>
</tr>
<tr>
<td>48-11-H</td>
<td>30</td>
<td>9.1</td>
</tr>
<tr>
<td>48-12-H</td>
<td>30</td>
<td>9.1</td>
</tr>
</tbody>
</table>

IL = IN LINE
CF = CENTER FEED
CL = CLUSTER
H = H-PATTERN

IN LINE
CENTER FEED
CLUSTER
• 23) 48” DIA. TANKS
• 6900GPM FLOW
• TANKS CAN BE MANIFOLDED TOGETHER FOR EXPANDED CAPACITY
• S.S.304 MEDIA FILTERS
• 8400 GPM CAPACITY
• 28) 48-INCH DIA. TANKS
HIGH PRESSURE TANKS

- 175 PSI OPERATING PRESSURE
- NOTE ROUNDED SHAPE OF HEADS
MEDIA FILTER COMPONENTS

1. UNDERDRAIN ASSEMBLY
2. FILTER INLET
3. INLET DEFLECTOR
4. FILTER MEDIA
5. FILTER GRAVEL
6. FILTER SIDEWALL
7. MEDIA FILLPORT
8. MEDIA DRAIN
Filtration Mode
Water enters the top of both filters and discharges through the bottom.

Backwash Mode
The flow is from bottom to top of only one filter, the other is still filtering.
COATED 48” BOTTOM HEAD WITH UNDERDRAIN

CUSTOM BOTTOM HEAD WITH UNDERDRAIN
• SM48-2A SYSTEM
• WELL DESIGNED SYSTEM
• NOTE- AIR VAC VALVES, PRESS. RELIEF ETC.
FILTER COMPONENT DIAGRAM

SUPPLIED WITH FILTER UNITS
1. SAND FILTER TANK
2. INLET MANIFOLD WITH COUPLING
3. OUTLET MANIFOLD WITHOUT COUPLING
4. GROOVED COUPLINGS
5. BACKWASH VALVE
NOTE: Backwash valve must be installed as shown—DO NOT REVERSE.
6. FILLPORT
7. PVC ADAPTER (GxS)
8. HYDRAULIC PICK-UP KIT
 (See Hydraulic Pick-Up Kit Drawing)

NOT SUPPLIED WITH FILTER UNITS
a. PVC 90° ELBOW
b. PVC PIPING
c. PVC TEE
d. AIR, VACUUM VENT
e. PVC MALE ADAPTER
f. RESTRICTOR VALVE
g. VIEW TUBE
HYDRAULIC PICK-UP KIT INSTALLATION

1. SOLENOID VALVE
2. P4MT4 POLY FITTING
3. 1/2 INCH NIPPLE
4. 1/2 INCH GATE VALVE
5. 3/4 INCH Y-STRAINER
6. 3/4 X 1/2 BUSHING
7. 1/4 INCH NIPPLE
8. P4ME4 POLY FITTING
9. PRESSURE GAUGE
10. P4FC2 POLY FITTING
11. 1/4 INCH GALVANIZED TEE
12. 1/4 INCH GALVANIZED CROSS
13. 1/2 X 1/4 BUSHING
14. POLY. TUBING

INSTALLATION OF TUBING

CUT THE TUBE SQUARELY AND REMOVE ANY BURRS, LOOSEN NUT ON FITTING UNTIL THREE THREADS ARE VISIBLE, MOISTEN END OF THE TUBE WITH WATER, PUSH TUBE STRAIGHT INTO FITTING UNTIL IT BOTTOMS ON THE FITTING’S SHOULDER, TIGHTEN NUT BY HAND.

NOTE: A LENGTH OF TUBING SHOULD BE ATTACHED TO THE EXHAUST PORT OF EACH SOLENOID VALVE TO CHANNEL EXHAUST WATER FROM THE ACTUATOR.
PICKING THE RIGHT MODEL

SITUATION:
your approx. flow rate is 1000 GPM
you must filter clean well water; rated at approx. 20 GPM / FT^2
Which model is appropriate for this situation?

\[
\text{Flow Rate} = \frac{1000}{20} = 50 \text{ FT}^2
\]

SOLUTION:

Then refer to the “Filtration Area” column on the previous graph, and find the Model (As Shown in the Next Slide)
Find 50 FT^2 under the Filtration Area, then select the Model:

<table>
<thead>
<tr>
<th>Model</th>
<th>System Line Size</th>
<th>Filtration Area*(FT^2)</th>
<th>Max Working Pressure (PSI)**</th>
<th>Shipping WT.</th>
<th>Gravel ***LBS</th>
<th>Media ***LBS</th>
<th>GPM Backwash #20 or #11</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM18-2</td>
<td>3”</td>
<td>3.5</td>
<td>125</td>
<td>420</td>
<td>150</td>
<td>400</td>
<td>27.0</td>
</tr>
<tr>
<td>SM24-2</td>
<td>4”</td>
<td>6.2</td>
<td>100</td>
<td>540</td>
<td>300</td>
<td>800</td>
<td>47.0</td>
</tr>
<tr>
<td>SM30-2</td>
<td>4”</td>
<td>9.8</td>
<td>100</td>
<td>670</td>
<td>600</td>
<td>1000</td>
<td>74.0</td>
</tr>
<tr>
<td>SM36-2</td>
<td>6”</td>
<td>14.2</td>
<td>80</td>
<td>920</td>
<td>800</td>
<td>1600</td>
<td>107.0</td>
</tr>
<tr>
<td>SM48-2</td>
<td>6”</td>
<td>25.0</td>
<td>80</td>
<td>1300</td>
<td>1000</td>
<td>2600</td>
<td>188.0</td>
</tr>
<tr>
<td>SM48-3</td>
<td>6”</td>
<td>37.5</td>
<td>80</td>
<td>1920</td>
<td>1500</td>
<td>3900</td>
<td>188.0</td>
</tr>
<tr>
<td>SM48-4</td>
<td>8”</td>
<td>50.0</td>
<td>80</td>
<td>2760</td>
<td>2000</td>
<td>5200</td>
<td>188.0</td>
</tr>
<tr>
<td>SM48-5</td>
<td>10”</td>
<td>62.5</td>
<td>80</td>
<td>3350</td>
<td>2500</td>
<td>6500</td>
<td>188.0</td>
</tr>
<tr>
<td>SM48-6</td>
<td>10”</td>
<td>75.0</td>
<td>80</td>
<td>4010</td>
<td>3000</td>
<td>7800</td>
<td>188.0</td>
</tr>
<tr>
<td>SM48-7</td>
<td>12”</td>
<td>87.5</td>
<td>80</td>
<td>4800</td>
<td>3500</td>
<td>9100</td>
<td>188.0</td>
</tr>
<tr>
<td>SM48-8</td>
<td>12”</td>
<td>100.0</td>
<td>80</td>
<td>5500</td>
<td>4000</td>
<td>10400</td>
<td>188.0</td>
</tr>
</tbody>
</table>
SAND MEDIA SIZES

NO. 16
California ARB Certified

NO. 20
California ARB Certified
SYMPTOM: SLUGGISH VALVES
POSSIBLE CAUSE:
A) LOW PRESSURE CAUSING VALVE TO OSCILLATE
B) DRIED OUT O-RING (LUBRICATE)
C) DIRTY “Y” STRAINER ON INLET LINE

SYMPTOM: LEAKAGE OUT BACKWASH LINE
POSSIBLE CAUSE:
A) BAD VALVE SEAT OR SEAL
B) VALVE NOT COMPLETELY SEATED
C) BENT BACKWASH SHAFT
D) LOOSE BACKWASH SHAFT NUT

SYMPTOM: LEAKAGE OUT OF ACTUATOR
POSSIBLE CAUSE:
A) RUPTURED DIAPHRAGM
B) COMPRESSION PLATE LOOSE

SYMPTOM: FILTER IS NOT BACKWASHING WHEN OTHERS IN SYSTEM ARE
POSSIBLE CAUSE:
A) SOLENOID VALVE GONE BAD
B) HYDRAULIC POLY TUBING LOOSE OR DISCONNECTED
C) MALFUNCTION OF BACKWASH VALVE (DISASSEMBLE & INSPECT)
D) WIRING ON CONTROL PANEL LOOSENED
E) DEFECTIVE CONTROL PANEL
F) SOLENOID VALVE IMPROPERLY ATTACHED

SYMPTOM: LAMPS NOT LIGHTING DURING TEST OF AUTO BACKWASH CONTROL
POSSIBLE CAUSE:
A) WIRING IN PANEL IS LOOSE OR DISCONNECTED
B) INCORRECT VOLTAGE INPUT
C) DEFECTIVE CONTROL PANEL - REPLACE

SYMPTOM: FILTER WILL NOT STOP
POSSIBLE CAUSE:
A) SOLENOID VALVE MANUAL OVERRIDE BUTTON BACKWASHING IS SET ON “O” INSTEAD OF “C”
B) MALFUNCTION OF BACKWASH VALVE (DISASSEMBLE AND INSPECT)
C) MALFUNCTION OF CONTROL PANEL
Solenoid Valve Assembly:

1. Plunger assembly rests inside solenoid body preventing flow to the actuator. Actuator is allowed to exhaust through plunger assembly.

2. Solenoid energizes, plunger assembly rises and flow is allowed into actuator, actuator diaphragm fills.
BACKWASH AND SOLENOID VALVE OPERATION:

1. Flow from inlet to filter. Solenoid valve deenergized.
2. Solenoid valve energized. Flow from inlet to filter and to backwash line.
4. Solenoid valve deenergized. Flow from tank to backwash line.
5. Solenoid valve deenergized. Flow from inlet to filter and to backwash line.
PLUGGED
SOLENOID
PLUGGED TEE
• ALGAE CONTROL
• NOTE- WHITE PIPE AT BACK RIGHT
NOTE - BACKWASH WATER LOCATION DIRECTLY IN FRONT OF PUMP SUCTION
THE BACKWASH RESTRICTOR VALVE

ONE OF THE MOST IMPORTANT PARTS OF THE MEDIA FILTER SYSTEM.
INDUSTRIAL S.S. FILTERS
EXTERNAL BACKWASH AND SIGHTGLASSES
EVERFILT DIFFERENCES

• CARBON STEEL TANKS ARE BUTT WELDED FOR STRENGTH AND CORROSION RESISTANCE

• S.S. TANKS ARE UP TO 60% THICKER THAN SOME OTHER MANUFACTURERS

• ALL WELDED WEDGEBWIRE UNDERDRAINS, NOT PRESS-FIT, FALSE BOTTOM OR PLASTIC

• HIGH DEGREE OF PARTS COMPATIBILITY

• MANUFACTURE OUR OWN LINE OF BACKWASH CONTROLS
STAY CONNECTED WITH US!

MAKE SURE TO LIKE US ON FACEBOOK
www.facebook.com/Everfilt

FIND US ON INSTAGRAM!
@EVERFILT_CO